Βρέθηκαν 43 αποτελέσματα   RSS     Μπερμπερίδης Κωνσταντίνος [X]   Αφαίρεση Όλων [X]

 

[Play] Κωδικοποίηση Αναλογικής Πηγής (Μέρος Α) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Θεώρημα δειγματοληψίας. Δειγματοληψία ζωνοπεριορισμένων ντετερμινιστικών σημάτων και ακριβής ανακατασκευή τους. Δειγματοληψία στοχαστικών σημάτων - φάσμα ισχύος. Ακριβής ανακατασκευή με την έννοια της μηδενικής αναμενόμενης τιμής για το μέσο τετραγωνικό σφάλμα. Συμπιεσμένη δειγματοληψία (compressed sampling). Βαθμωτοί και διανυσματικοί κβαντιστές. Συνάρτηση κβάντισης για έναν βαθμωτό κβαντιστή. Θόρυβος κβάντισης. Δυναμική περιοχή.
Εξάμηνο: 7o 2014-11-21 00:36:57 800
[Play] Θεωρία Ρυθμού-Παραμόρφωσης (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Απωλεστική (lossy) συμπίεση πληροφορίας. Ερώτημα: Ποιά είναι η σχέση που συνδέει το ρυθμό κωδικοποίησης μιας πηγής με την παραμόρφωση που θα εισαχθεί; Μετρικές παραμόρφωσης: Hamming, τετραγωνικό σφάλμα, μέση παραμόρφωση. Αναμενόμενη τιμή της παραμόρφωσης. Η αναμενόμενη τιμή της παραμόρφωσης όταν η μετρική που χρησιμοποιούμε είναι η απόσταση Hamming, ταυτίζεται με την πιθανότητα σφάλματος. Θεώρημα ρυθμού-παραμόρφωσης. Συνάρτηση ρυθμού-παραμόρφωσης για δυαδική πηγή και μετρική παραμόρφωσης Hamming. Συνάρτηση ρυθμού-παραμόρφωσης για συνεχή πηγή Gauss και μέση τετραγωνική παραμόρφωση. Η χρήση ενός παραπάνω δυαδικού ψηφίου για την κωδικοποίηση μιας συνεχούς πηγής Gauss οδηγεί σε υποτετραπλασιασμό της μέσης τετραγωνικής παραμόρφωσης.
Εξάμηνο: 7o 2014-11-21 00:42:39 628
[Play] Χωρητικότητα καναλιού (Φροντιστήριο - Μέρος Β) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Άσκηση 1: Μια πηγή μπορεί να παράγει δύο σύμβολα, x1 και x2. Τα σύμβολα αυτά μεταδίδονται μέσα από ένα κανάλι το οποίο αντιστοιχίζει το x1 με πιθανότητα 1/2 στο y1, το x1 με πιθανότητα 1/2 στο y2 και τέλος το x2 στο σύμβολο εξόδου y3 με πιθανότητα 1. Υπολογίζουμε τη χωρητικότητα του καναλιού αυτού μέσω της μεγιστοποίησης της αμοιβαίας πληροφορίας ως προς όλες τις κατανομές πιθανοτήτων για τα σύμβολα εισόδου. Η αμοιβαία πληροφορία υπολογίζεται χρησιμοποιώντας την εντροπία της πηγής και την υπό συνθήκη εντροπία της εισόδου για δοσμένη έξοδο. Άσκηση 2: Μας δίνεται μια από κοινού συνάρτηση πυκνότητας πιθανότητας δύο τυχαίων μεταβλητών X και Y, η οποία εξαρτάται από μια άγνωστη παράμετρο K. Χρησιμοποιώντας την ιδιότητα πως το ορισμένο ολοκλήρωμα μιας συνάρτησης πυκνότητας πιθανότητας σε όλο το πεδίο ορισμού της θα πρέπει να είναι μονάδα, υπολογίζουμε την τιμή της παραμέτρου K. Άσκηση 3: Πρέπει να δείξουμε πως η τυχαία μεταβλητή X είναι κανονική. Για να υπολογίσουμε την συνάρτηση πυκνότητας πιθανότητας της τυχαίας μεταβλητής X γνωρίζοντας την από κοινού συνάρτηση πυκνότητας πιθανότητας των X και Y, υπολογίζουμε το ορισμένο ολοκλήρωμα της από κοινού pdf πάνω στο πεδίο ορισμού της Y. Υπολογίζοντας την έκφραση που προκύπτει, αναγνωρίζουμε πως έχει τη μορφή μιας κανονικής pdf με μέση τιμή 0 και διασπορά 1. Άσκηση 4: Πρέπει να εξετάσουμε αν οι X και Y είναι ανεξάρτητες. Θα εξετάσουμε αν η από κοινού pdf είναι ίση με το γινόμενο των επιμέρους pdf. Εύκολα παρατηρούμε πως όταν οι τυχαίες μεταβλητές X και Y έχουν αντίθετα πρόσημα, τότε η απο κοινού pdf είναι μηδέν. Όμως, το γινόμενο των επιμέρους pdf δεν είναι μηδέν στις περιοχές αυτές. Επομένως οι τυχαίες μεταβλητές δεν είναι ανεξάρτητες.
Εξάμηνο: 7o 2014-11-10 00:34:47 418
[Play] Χωρητικότητα καναλιού (Φροντιστήριο - Μέρος Α) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Άσκηση 1: Σε ένα δυαδικό συμμετρικό κανάλι εισέρχονται σύμβολα με ρυθμό 1000 σύμβολα ανά δευτερόλεπτο. Τα σύμβολα είναι ισοπίθανα. Για τις περιπτώσεις όπου η πιθανότητα σωστής μετάδοσης p ενός συμβόλου μέσα από το κανάλι, p=0.9, p=0.8 και p=0.6, υπολογίζουμε το ρυθμό μετάδοσης πληροφορίας μέσα από το κανάλι. Ο ζητούμενος ρυθμός δίνεται ως το γινόμενο της αμοιβαίας πληροφορίας με το ρυθμό της εισόδου σε σύμβολα ανά δευτερόλεπτο. Υπολογίζουμε την αμοιβαία πληροφορία μέσω της εντροπίας της πηγής και της υπό συνθήκη εντροπίας της εισόδου για δεδομένη έξοδο. Υπολογίζουμε τις από κοινού πιθανότητες εισόδου εξόδου μέσω του κανόνα του Bayes. Υπολογίζουμε τις υπό συνθήκη πιθανότητες χρησιμοποιώντας τον κανόνα της αλυσίδας. Άσκηση 2: Υπολογίζουμε τη χωρητικότητα ενός δυαδικού συμμετρικού καναλιού χωρίς μνήμη. Η χωρητικότητα δίνεται ως η μέγιστη τιμή της αμοιβαίας πληροφορίας ως προς όλες τις πιθανές κατανομές πιθανοτήτων των συμβόλων εισόδου. Η μεγιστοποίηση γίνεται θέτωντας την πρώτη παράγωγο της συνάρτησης την οποία μελετάμε ίση με το μηδέν.
Εξάμηνο: 7o 2014-11-10 00:30:50 568

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Άσκηση 1: Υπολογίζουμε την εντροπία μιας πηγής (κάμερας), για την οποία γνωρίζουμε τις πιθανότητες τα σύμβολά της να βρίσκονται σε ένα πλήθος από διαστήματα τιμών, και εντός κάθε διαστήματος οι τιμές να είναι σοπίθανές. Στη συνέχεια υπολογίζουμε το ολικό πληροφοριακό περιεχόμενο μιας εικόνας, 500x400 εικονοστοιχείων. Στη συνέχεια, γνωρίζοντας πως η κάμερα παράγει 25 frames ανά δευτερόλεπτο, υπολογίζουμε το συνολικό πληροφοριακό περιεχόμενο. Άσκηση 2: Υπολογίζουμε την εντροπία μιας δυαδικής πηγής (κώδικας Morse), γνωρίζοντας μια σχέση για τις πιθανότητες της τελείας και της παύλας. Στη συνέχεια υπολογίζουμε το ρυθμό της πηγής σε σύμβολα ανά δευτερόλεπτο και έτσι υπολογίζουμε το ρυθμό παραγωγής πληροφορίας στην έξοδο της πηγής. Άσκηση 3: Υπολογίζουμε τη χωρήτικότητα ενός καναλιού με εύρος ζώνης 3000Hz και SNR 10 dB. Στη συνέχεια θεωρούμε μια πηγή με 128 ισοπίθανα σύμβολα, και υπολογίζουμε το μέγιστο ρυθμό (σε σύμβολα ανά δευτερόλεπτο) με τον οποίο μπορούμε να μεταδώσουμε πληροφορία μέσα από αυτό το κανάλι.
Εξάμηνο: 7o 2014-11-07 00:30:07 431

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Άσκηση 1: Μια πηγή με τρία σύμβολα S1, S2 και S3 έχει αντίστοιχες πιθανότητες 0.4, 0.3 και 0.3. Για την πηγή αυτή υπολογίζουμε την εντροπία της. Στη συνέχεια θεωρούμε πως η πηγή αυτή παράγει σύμβολα με ρυθμό 1000 σύμβολα ανά δευτερόλεπτο, και θέλουμε να υπολογίσουμε το μέσο ρυθμό πληροφορίας στην έξοδο της πηγής. Άσκηση 2: Υπολογίζουμε την κωδικοποίηση Huffman για την πηγή της προηγούμενης άσκησης. Υπολογιζουμε επίσης το μέσο μήκος λέξης και την αποδοτικότητα της κωδικοποίησης. Άσκηση 3: Υπολογίζουμε την εντροπία της δεύτερης τάξης επέκτασης της πηγής. Ο ρυθμός συμβόλων της πηγής διαιρείται δια δύο. Υπολογίζουμε την κωδικοποίηση Huffman της επεκταμένης πηγής, καθώς και την αποδοτικότητα της κωωδικοποίησης.
Εξάμηνο: 7o 2014-11-07 00:37:56 833
[Play] Θεωρία Πληροφορίας - Κωδικοποίηση πηγής (Μέρος Β) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Γίνεται σύνδεση με την προηγούμενη διάλεξη και συγκεκριμένα το θεώρημα κωδικοποίησης πηγής. Στην συνέχεια, παρουσιάζονται οι προθεματικοί κώδικες και ο αλγόριθμος Huffman (μη απωλεστική κωδικοποίηση). Συγκεκριμένα, περιγράφονται τα βασικά χαρακτηριστικά των προθεματικών κωδίκων (όπως ότι είναι μεταβλητού μήκους) και η ιδιότητα της μοναδικής αποκωδικοποιησιμότητας ενώ παρουσιάζονται και κάποια παραδείγματα. Περιγράφεται επίσης η ανισότητα Kraft-McMillan και το διάστημα που κινείται το μέσο μήκος ενός προθεματικού κώδικα. Η έννοια της αποδοτικότητας κώδικα. Ορίζεται η ένοια της Ν-οστής τάξης επέκτασης μιας πηγής και η δυνατότητά της να προσεγγίζει το όριο συμπίεσης της αρχικής πηγής. Παρουσιάζονται τα βήματα του αλγορίθμου Huffman καθώς και ένα σχετικό παράδειγμα. Τέλος, παρουσιάζονται κάποια χαρακτηριστικά του αλγορίθμου.
Εξάμηνο: 7o 2014-10-31 00:50:07 581
[Play] Θεωρία πληροφορίας - Κωδικοποίηση καναλιού (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Η διάλεξη ξεκινάει με μια αναφορά σε ένα μειονέκτημα του αλγορίθμου Huffman. Στην συνέχεια, παρουσιάζεται το πρόβλημα της κωδικοποίησης καναλιού και τα ερωτήματα που μπορεί να απαντήσει. Παρουσιάζεται ένα βασικό σύστημα επικοινωνίας και περιγράφονται τρόποι διάκρισης των καναλιών μετάδοσης. Ορίζονται τα διακριτά κανάλια χωρίς μνήμη και δίνεται ένα παράδειγμα. Περιγράφονται οι πιθανότητες μετάβασης, οι από κοινού πιθανότητες εισόδου/εξόδου, οι πιθανότητες σφάλματος και παρουσιάζεται ένα παράδειγμα κατανόησης των παραπάνω.
Εξάμηνο: 7o 2014-10-31 00:40:04 585
[Play] Θεωρία πληροφορίας - Βασικές έννοιες (Μέρος Β) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Η παρούσα διάλεξη ξεκινάει με μια μικρή ανασκόπηση της προηγούμενης διάλεξης. Εν συνεχεία, περιγράφεται η μονάδα μέτρησης της πληροφορίας. Ορίζεται η έννοια της διακριτής πηγής χωρίς μνήμη καθώς και η έννοια της εντροπίας της (μέση πληροφορία). Περιγράφεται το παράδειγμα της δυαδικής πηγής χωρίς μνήμη και η εντροπία της. Ορίζεται η πηγή διακριτού χρόνου, συνεχούς αλφαβήτου και η έννοια της διαφορικής εντροπίας. Παρουσιάζονται τα παραδείγματα πηγών με ομοιόμορφα κατανεμημένα σύμβολα σε ένα διάστημα καθώς και Gaussian κατανεμημένα σύμβολα). Η περίπτωση της πηγής με μνήμη και ο ρυθμός εντροπίας. Το πρόβλημα της κωδικοποίησης μιας πηγής με Μ σύμβολα και οι κώδικες μεταβλητού μήκους.
Εξάμηνο: 7o 2014-10-27 00:39:35 496
[Play] Θεωρία Πληροφορίας - Κωδικοποίηση πηγής (Μέρος Α) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Παρουσιάζεται το θεώρημα κωδικοποίησης πηγής και εξηγείται τι σημαίνει η παραβίασή του. Περιγράφονται τα κύρια βήματα της απόδειξης του θεωρήματος. Ορίζονται οι έννοιες των τυπικών και μη τυπικών ακολουθιών. Η περίπτωση της ομοιόμορφης πηγής.
Εξάμηνο: 7o 2014-10-27 00:41:44 619
[Play] Στοχαστικές διαδικασίες - Βασικές έννοιες (Μέρος Δ) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Στην παρούσα διάλεξη καταρχήν υπενθυμίζονται κάποια από τα είδη στοχαστικών διαδικασιών που παρουσιάστηκαν στο προηγούμενο μάθημα με έμφαση στις εργοδικές διαδικασίες. Στην συνέχεια, περιγράφεται ο πίνακας αυτοσυσχετίσεων. Ορίζεται η πυκνότητα φάσματος ισχύος (και γίνεται μια αντιστοίχιση με τα ντετερμινιστικά σήματα και το πεδίο των συχνοτήτων). Περιγράφεται η εκτίμηση της πυκνότητας φάσματος ισχύος στις περιπτώσεις των ασθενώς στάσιμων και των εργοδικών διαδικασιών (αναφορά στην έννοια ενός αμερόληπτου εκτιμητή). Τέλος, συνδέονται οι πυκνότητες φάσματος ισχύος των στοχαστικών διαδικασιών εισόδου/εξόδου ενός γραμμικού, χρονικά αμετάβλητου φίλτρου.
Εξάμηνο: 7o 2014-10-24 00:45:19 318
[Play] Θεωρία πληροφορίας - Βασικές έννοιες (Μέρος Α) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Στην παρούσα διάλεξη αρχικά (και σε συνέχεια από την προηγούμενη διάλεξη) περιγράφεται η έννοια της ετεροσυσχέτισης δυο στοχαστικών διαδικασιών ενώ παρουσιάζεται περαιτέρω ο πίνακας αυτοσυσχετίσεων. Εν συνεχεία, η διάλεξη εστιάζει στην θεωρία πληροφορίας και τα θέματα που θα παρουσιαστούν (όπως η αποδοτική κωδικοποίηση πηγής και καναλιού). Περιγράφονται η κωδικοποίηση πηγής και τα είδη πηγών (θέματα δειγματοληψίας) και ορίζεται η πηγή πληροφορίας με διακριτό αλφάβητο καθώς και το μέτρο πληροφορίας.
Εξάμηνο: 7o 2014-10-24 00:39:42 639
[Play] Στοχαστικές διαδικασίες - Βασικές έννοιες (Μέρος Γ) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Στην παρούσα διάλεξη ορίζονται η στασιμότητα τάξης Μ, και η ασθενής στασιμότητα. Για την δεύτερη περίπτωση, παρουσιάζονται επίσης κάποιες βασικές ιδιότητες, συγκεκριμένα, η άρτια συμμετρία, η μέγιστη τιμή και η περιοδικότητα. Επίσης, ορίζονται οι εργοδικές τυχαίες διαδικασίες καθώς και η εργοδικότητα πρώτης και δεύτερης τάξης. Τέλος, παρουσιάζεται το φιλτράρισμα μιας τυχαίας διαδικασίας και η σχέση εισόδου-εξόδου που προκύπτει όταν το φίλτρο είναι γραμμικό και χρονικά αμετάβλητο ως προς την μέση τιμή και την συνάρτηση αυτοσυσχέτισης.
Εξάμηνο: 7o 2014-10-20 00:44:49 350
[Play] Στοχαστικές διαδικασίες - Βασικές έννοιες (Μέρος Β) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Στην παρούσα διάλεξη ορίζεται η έννοια της τυχαίας διαδικασίας είτε ως σύνολο συναρτήσεων είτε ως μια ακολουθία τυχαίων μεταβλητών. Ορίζονται επίσης η μέση τιμή και διασπορά καθώς και η συνάρτηση αυτοσυσχέτισης. Τέλος, περιγράφεται η έννοια της ισχυρής στασιμότητας.
Εξάμηνο: 7o 2014-10-20 00:40:24 429
[Play] Μαθηματικά μοντέλα καναλιών (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Η διάλεξη ξεκινάει με κάποια εισαγωγικά στοιχεία γύρω από τα μαθηματικά μοντέλα καναλιών (π.χ. πως προέκυψαν). Αρχικά, παρουσιάζεται το μοντέλο προσθετικού θορύβου όπου υιοθετείται ο λευκός Gaussian θόρυβος και παρουσιάζονται οι βασικές ιδιότητές του, δυο κύριοι λόγοι χρήσης του και κάποιες επιπλέον εκδοχές του. Στην συνέχεια, περιγράφεται το μοντέλο γραμμικού φίλτρου. Δίνονται κάποιες πληροφορίες για τα μη γραμμικά μοντέλα (το παράδειγμα των δορυφορικών επικοινωνιών). Εν συνεχεία, παρουσιάζεται το μοντέλο χρονικά μεταβαλλόμενου γραμμικού φίλτρου. Η διάλεξη ολοκληρώνεται με την περιγραφή του παραμετρικού μοντέλου.
Εξάμηνο: 7o 2014-10-17 00:46:08 468
[Play] Στοχαστικές διαδικασίες - Βασικές έννοιες (Μέρος Α) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Περιγράφεται η ύπαρξη στοχαστικών σημάτων στις ψηφιακές τηλεπικοινώνιες και συνδέεται η ύπαρξή τους με την έννοια του θορύβου. Συζητούνται οι έννοιες των ντετερμινιστικών και στοχαστικών ποσοτήτων. Περιγράφεται η έννοια των τυχαίων μεταβλητών και των στοχαστικών διαδικασιών. Χρησιμοποιείται το παράδειγμα του συνημιτόνου και της θερμοκρασίας για καλύτερη κατανόηση. Η στοχαστική διαδικασία ως σύνολο συναρτήσεων και ως μια ακολουθία τυχαίων μεταβλητών. Περιγράφεται τι πληροφορία χρειάζεται για την πλήρη περιγραφή μιας στοχαστικής διαδικασίας (η απο-κοινού συνάρτηση πυκνότητας πιθανότητας).
Εξάμηνο: 7o 2014-10-17 00:34:34 584
[Play] Το κανάλι μετάδοσης (Μέρος Α) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Στην παρούσα διάλεξη περιγράφεται η έννοια του καναλιού. Παρουσιάζονται τα βασικά προβλήματα που εισάγει ένα κανάλι όπως το περιορισμένο εύρος ζώνης, οι παραμορφώσεις πλάτους και φάσης, ο θόρυβος, η πολύδρομη μετάδοση και η χρονική μεταβολή. Εν συνεχεία, γίνεται αναφορά στους τύπους καναλιών όπως τα ενσύρματα, π.χ. συνεστραμμένου ζεύγους και ομοαξονικά, (με αναφορά στην τεχνολογία DSL και στο φαινόμενο crosstalk), οι κυματοδηγοί και οι οπτικές ίνες (χαρακτηριστικά απόσβεσης). Παρουσιάζονται επίσης τα εύρη ζώνης στις οποίες λειτουργούν τα ενσύρματα κανάλια. Επίσης, περιγράφονται τα ασύρματα κανάλια, τα υποβρύχια ακουστικά κανάλια (και το πρόβλημα με το ηλεκτρομαγνητικό φάσμα), τα κανάλια αποθήκευσης και άλλα όπως τα power lines.
Εξάμηνο: 7o 2014-10-13 00:40:34 458
[Play] Το κανάλι μετάδοσης (Μέρος Β) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Σε συνέχεια της προηγούμενης διάλεξης, παρουσιάζονται τα βασικά εύρη ζώνης των ασύρματων καναλιών και περιγράφεται μια βασική σχέση για την λαμβανόμενη ισχύ καθώς και οι βασικοί παράμετροι στους οποίους βασίζεται (π.χ. το κέρδος κεραίας εκπομπής και λήψης). Ακολούθως, παρουσιάζονται διάφοροι μηχανισμοί διάδοσης ενός κύματος (π.χ. κυματοδήγηση μεταξύ εδάφους-ιονόσφαιρας, εδαφικό κύμα και κύμα χώρου) καθώς και μηχανισμοί διάδοσης που χρησιμοποιούνται στις κινητές επικοινωνίες (π.χ. ανάκλαση, περίθλαση, σκέδαση). Η διάλεξη ολοκληρώνεται με την περιγραφή των κύριων παραγόντων υποβάθμισης που εμφανίζονται κατά την ασύρματη διάδοση (η περίπτωση της εξασθένησης λόγω βροχόπτωσης).
Εξάμηνο: 7o 2014-10-13 00:33:19 370
[Play] Εισαγωγή (Μέρος Γ) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Στην διάλεξη αυτή, περιγράφανται με μεγαλύτερη λεπτομέρεια τα βασικά τμήματα ενός ψηφιακού τηλεπικοινωνιακού συστήματος. Περιγράφεται η έννοια της πηγής και δίνονται κάποια παραδείγματα. Μετά, περιγράφεται ο κωδικοποιητής πηγής (αποδοτική δυαδική αναπαράσταση) και τα βασικά του χαρακτηριστικά καθώς και ο κωδικοποιητής καναλιού (εισαγωγή πλεονασμού) με τα βασικά του χαρακτηριστικά. Τέλος, δίνοται πληροφορίες για τα φίλτρα πομπού/δέκτη και περιγράφεται η έννοια του διαμορφωτή.
Εξάμηνο: 7o 2014-10-10 00:43:30 553
[Play] Εισαγωγή (Μέρος Δ) (Μπερμπερίδης ΚωνσταντίνοςΚαθηγητής)

Ψηφιακές Τηλεπικοινωνίες, Τμήμα Τμήμα Mηχανικών Η/Υ & Πληροφορικής

Συνεχίζεται η περιγραφή του διαμορφωτή (από την προηγούμενη διάλεξη) στην περίπτωση των ψηφιακών συστημάτων. Περιγράφονται βασικές κατηγορίες ψηφιακής διαμόρφωσης (αλλαγή πλάτους, αλλαγή συχνότητας, αλλαγή φάσης). Ακολούθως, παρουσιάζεται ένα πιο αναλυτικό μοντέλο ενός ψηφιακού συστήματος (όπου εισάγονται οι έννοιες του ισοσταθμιστή και της λήψης αποφάσεων). Περιγράφεται επίσης η έννοια του καναλιού και τα βασικά προβλήματα που συνδέονται με αυτό (για την μετάδοση πληροφορίας μέσω αυτού) όπως το περιορισμένο εύρος ζώνης, τις παραμορφώσεις πλάτους και φάσης, τον θόρυβο (το παράδειγμα του λευκού θορύβου), την πολύδρομη μετάδοση και την χρονική μεταβολή.
Εξάμηνο: 7o 2014-10-10 00:36:16 538
Top